

Contents lists available at ScienceDirect

# Journal of Algebra

www.elsevier.com/locate/jalgebra



# Complete classification of the torsion structures of rational elliptic curves over quintic number fields



Enrique González-Jiménez<sup>1</sup>

Universidad Autónoma de Madrid, Departamento de Matemáticas, Madrid, Spain

#### ARTICLE INFO

Article history: Received 9 June 2016 Available online 15 February 2017 Communicated by Gerhard Hiss

MSC: primary 11G05, 14G05 secondary 14H52, 11R21

Keywords: Elliptic curves Torsion subgroup Rationals Quintic number fields

#### ABSTRACT

We classify the possible torsion structures of rational elliptic curves over quintic number fields. In addition, let E be an elliptic curve defined over  $\mathbb Q$  and let  $G=E(\mathbb Q)_{\mathrm{tors}}$  be the associated torsion subgroup. We study, for a given G, which possible groups  $G\subseteq H$  could appear such that  $H=E(K)_{\mathrm{tors}}$ , for  $[K:\mathbb Q]=5$ . In particular, we prove that at most there is one quintic number field K such that the torsion grows in the extension  $K/\mathbb Q$ , i.e.,  $E(\mathbb Q)_{\mathrm{tors}}\subsetneq E(K)_{\mathrm{tors}}$ .

© 2017 Elsevier Inc. All rights reserved.

#### 1. Introduction

Let E/K be an elliptic curve defined over a number field K. The Mordell-Weil Theorem states that the set of K-rational points, E(K), is a finitely generated abelian group. Denote by  $E(K)_{\text{tors}}$ , the torsion subgroup of E(K), which is isomorphic to  $\mathcal{C}_m \times \mathcal{C}_n$  for two positive integers m, n, where m divides n and where  $\mathcal{C}_n$  is a cyclic group of order n.

One of the main goals in the theory of elliptic curves is to characterize the possible torsion structures over a given number field, or over all number fields of a given degree.

E-mail address: enrique.gonzalez.jimenez@uam.es.

<sup>&</sup>lt;sup>1</sup> The author was partially supported by the grant MTM2015-68524-P.

In 1978 Mazur [25] published a proof of Ogg's conjecture (previously established by Beppo Levi), a milestone in the theory of elliptic curves. In that paper, he proved that the possible torsion structures over  $\mathbb{Q}$  belong to the set:

$$\Phi(1) = \{ \mathcal{C}_n \mid n = 1, \dots, 10, 12 \} \cup \{ \mathcal{C}_2 \times \mathcal{C}_{2m} \mid m = 1, \dots, 4 \},$$

and that any of them occurs infinitely often. A natural generalization of this theorem is as follows. Let  $\Phi(d)$  be the set of possible isomorphic torsion structures  $E(K)_{\text{tors}}$ , where K runs through all number fields K of degree d and E runs through all elliptic curves over K. Thanks to the uniform boundedness theorem [26],  $\Phi(d)$  is a finite set. Then the problem is to determine  $\Phi(d)$ . Mazur obtained the rational case (d=1). The generalization to quadratic fields (d=2) was obtained by Kamienny, Kenku and Momose [17,22]. For  $d \geq 3$  a complete answer for this problem is still open, although there have been some advances in the last years.

However, more is known about the subset  $\Phi^{\infty}(d) \subseteq \Phi(d)$  of torsion subgroups that arise for infinitely many  $\overline{\mathbb{Q}}$ -isomorphism classes of elliptic curves defined over number fields of degree d. For d=1 and d=2 we have  $\Phi^{\infty}(d)=\Phi(d)$ , the cases d=3 and d=4 have been determined by Jeon et al. [15,16], and recently the cases d=5 and d=6 by Derickx and Sutherland [7].

Restricting our attention to the complex multiplication case, we denote  $\Phi^{\text{CM}}(d)$  the analogue of the set  $\Phi(d)$  but restricting to elliptic curves with complex multiplication (CM elliptic curves in the sequel). In 1974 Olson [30] determined the set of possible torsion structures over  $\mathbb{Q}$  of CM elliptic curves:

$$\Phi^{\text{CM}}(1) = \{ C_1, C_2, C_3, C_4, C_6, C_2 \times C_2 \}.$$

The quadratic and cubic cases were determined by Zimmer et al. [27,8,31]; and recently, Clark et al. [5] have computed the sets  $\Phi^{\text{CM}}(d)$ , for  $4 \leq d \leq 13$ . In particular, they proved

$$\Phi^{\rm CM}(5) = \Phi^{\rm CM}(1) \cup \{ \mathcal{C}_{11} \}.$$

In addition to determining  $\Phi(d)$ , there are many authors interested in the question of how the torsion grows when the field of definition is enlarged. We focus our attention when the underlying field is  $\mathbb{Q}$ . In analogy to  $\Phi(d)$ , let  $\Phi_{\mathbb{Q}}(d)$  be the subset of  $\Phi(d)$  such that  $H \in \Phi_{\mathbb{Q}}(d)$  if there is an elliptic curve  $E/\mathbb{Q}$  and a number field K of degree d such that  $E(K)_{\text{tors}} \simeq H$ . One of the first general result is due to Najman [29], who determined  $\Phi_{\mathbb{Q}}(d)$  for d=2,3. Chou [4] has given a partial answer to the classification of  $\Phi_{\mathbb{Q}}(4)$ . Recently, the author with Najman [11] have completed the classification of  $\Phi_{\mathbb{Q}}(4)$  and  $\Phi_{\mathbb{Q}}(p)$  for p prime. Moreover, in [11] it has been proved that  $E(K)_{\text{tors}} = E(\mathbb{Q})_{\text{tors}}$  for all elliptic curves E defined over  $\mathbb{Q}$  and all number fields E0 of degree E1. In particular,  $\Phi_{\mathbb{Q}}(d) = \Phi(1)$  if E1 is not divisible by a prime E2. In particular,  $\Phi_{\mathbb{Q}}(d) = \Phi(1)$  if E3 is not divisible by a prime E3.

Our first result determines  $\Phi_{\mathbb{Q}}(5)$ .

**Theorem 1.** The sets  $\Phi_{\mathbb{Q}}(5)$  and  $\Phi_{\mathbb{Q}}^{CM}(5)$  are given by

$$\Phi_{\mathbb{Q}}(5) = \{ C_n \mid n = 1, \dots, 12, 25 \} \cup \{ C_2 \times C_{2m} \mid m = 1, \dots, 4 \}, 
\Phi_{\mathbb{Q}}^{CM}(5) = \{ C_1, C_2, C_3, C_4, C_6, C_{11}, C_2 \times C_2 \}.$$

**Remark.** 
$$\Phi_{\mathbb{Q}}(5) = \Phi_{\mathbb{Q}}(1) \cup \{ \mathcal{C}_{11}, \mathcal{C}_{25} \} \text{ and } \Phi_{\mathbb{Q}}^{CM}(5) = \Phi^{CM}(5) = \Phi^{CM}(1) \cup \{ \mathcal{C}_{11} \}.$$

For a fixed  $G \in \Phi(1)$ , let  $\Phi_{\mathbb{Q}}(d, G)$  be the subset of  $\Phi_{\mathbb{Q}}(d)$  such that E runs through all elliptic curves over  $\mathbb{Q}$  with  $E(\mathbb{Q})_{\text{tors}} \simeq G$ . For each  $G \in \Phi(1)$  the sets  $\Phi_{\mathbb{Q}}(d, G)$  have been determined for d = 2 in [23,13], for d = 3 in [12] and partially for d = 4 in [10].

Our second result determines  $\Phi_{\mathbb{Q}}(5)$  for any  $G \in \Phi(1)$ .

**Theorem 2.** For  $G \in \Phi(1)$ , we have  $\Phi_{\mathbb{O}}(5,G) = \{G\}$ , except in the following cases:

| G               | $\Phi_{\mathbb{Q}}\left(5,G\right)$                |
|-----------------|----------------------------------------------------|
| $\mathcal{C}_1$ | $\{\mathcal{C}_1,\mathcal{C}_5,\mathcal{C}_{11}\}$ |
| $\mathcal{C}_2$ | $\{\mathcal{C}_2,\mathcal{C}_{10}\}$               |
| $\mathcal{C}_5$ | $\{\mathcal{C}_5,\mathcal{C}_{25}\}$               |

Moreover, there are infinitely many  $\overline{\mathbb{Q}}$ -isomorphism classes of elliptic curves  $E/\mathbb{Q}$  with  $H \in \Phi_{\mathbb{Q}}(5,G)$ , except for the case  $H = \mathcal{C}_{11}$  where only the elliptic curves 121a2, 121c2, 121b1 have eleven torsion over a quintic number field.

In fact, it is possible to give a more detailed description of how the torsion grows. For this purpose for any  $G \in \Phi(1)$  and any positive integer d, we define the set

$$\mathcal{H}_{\mathbb{Q}}(d,G) = \{S_1,...,S_n\}$$

where  $S_i = [H_1, ..., H_m]$  is a list of groups  $H_j \in \Phi_{\mathbb{Q}}(d, G) \setminus \{G\}$ , such that, for each i = 1, ..., n, there exists an elliptic curve  $E_i/\mathbb{Q}$  that satisfies the following properties:

- $E_i(\mathbb{Q})_{\text{tors}} \simeq G$ , and
- there are number fields  $K_1, ..., K_m$  (non-isomorphic pairwise) whose degrees divide d with  $E_i(K_j)_{\text{tors}} \simeq H_j$ , for all j = 1, ..., m; and for each j there does not exist  $K'_j \subset K_j$  such that  $E_i(K'_j)_{\text{tors}} \simeq H_j$ .

We are allowing the possibility of two (or more) of the  $H_j$  being isomorphic. The above sets have been completely determined for the quadratic case (d=2) in [14], for the cubic case (d=3) in [12] and computationally conjectured for the quartic case (d=4) in [10]. The quintic case (d=5) is treated in this paper, and the next result determined  $\mathcal{H}_{\mathbb{Q}}(5,G)$  for any  $G \in \Phi(1)$ :

**Theorem 3.** For  $G \in \Phi(1)$ , we have  $\mathcal{H}_{\mathbb{Q}}(5,G) = \emptyset$ , except in the following cases:

| G                          | $\mathcal{H}_{\mathbb{Q}}(5,G)$ |
|----------------------------|---------------------------------|
| C                          | $\mathcal{C}_5$                 |
| $\mathcal{C}_1$            | $\mathcal{C}_{11}$              |
| $\mathcal{C}_2$            | $\mathcal{C}_{10}$              |
| $\overline{\mathcal{C}}_5$ | $\mathcal{C}_{25}$              |

In particular, for any elliptic curve  $E/\mathbb{Q}$ , there is at most one quintic number field K, up to isomorphism, such that  $E(K)_{\text{tors}} \neq E(\mathbb{Q})_{\text{tors}}$ .

**Remark.** Notice that for any CM elliptic curve  $E/\mathbb{Q}$  and any quintic number field K it has  $E(K)_{\text{tors}} = E(\mathbb{Q})_{\text{tors}}$ , except to the elliptic curve 121b1 and  $K = \mathbb{Q}(\zeta_{11})^+ = \mathbb{Q}(\zeta_{11} + \zeta_{11}^{-1})$  where  $E(\mathbb{Q})_{\text{tors}} \simeq \mathcal{C}_1$  and  $E(K)_{\text{tors}} \simeq \mathcal{C}_{11}$ .

Let us define

$$h_{\mathbb{Q}}(d) = \max_{G \in \Phi(1)} \left\{ \#S \mid S \in \mathcal{H}_{\mathbb{Q}}(d,G) \right\}.$$

The values  $h_{\mathbb{Q}}(d)$  have been computed for d=2 and d=3 in [14] and [12] respectively. For d=4 we computed a lower bound in [10]. For d=5 we have:

Corollary 4.  $h_{\mathbb{Q}}(5) = 1$ .

**Remark.** In particular, we have deduced the following:

| d                   | 2 | 3 | 4        | 5 |
|---------------------|---|---|----------|---|
| $h_{\mathbb{Q}}(d)$ | 4 | 3 | $\geq 9$ | 1 |

*Notation.* We will use the Antwerp–Cremona tables and labels [1,6] when referring to specific elliptic curves over  $\mathbb{Q}$ .

For conjugacy classes of subgroups of  $GL_2(\mathbb{Z}/p\mathbb{Z})$  we will use the labels introduced by Sutherland in [33, §6.4].

We will write  $G \simeq H$  (or  $G \lesssim H$ ) for the fact that G is isomorphic to H (or to a subgroup of H resp.) without further detail on the precise isomorphism.

For a positive integer n we will write  $\varphi(n)$  for the Euler-totient function of n.

We use  $\mathcal{O}$  to denote the point at infinity of an elliptic curve (given in Weierstrass form).

#### 2. Mod n Galois representations associated to elliptic curves

Let  $E/\mathbb{Q}$  be an elliptic curve and n a positive integer. We denote by E[n] the n-torsion subgroup of  $E(\overline{\mathbb{Q}})$ , where  $\overline{\mathbb{Q}}$  is a fixed algebraic closure of  $\mathbb{Q}$ . That is,  $E[n] = \{P \in$ 

 $E(\overline{\mathbb{Q}}) \mid [n]P = \mathcal{O}$ . The absolute Galois group  $Gal(\overline{\mathbb{Q}}/\mathbb{Q})$  acts on E[n] by its action on the coordinates of the points, inducing a Galois representation

$$\rho_{E,n}: \operatorname{Gal}(\overline{\mathbb{Q}}/\mathbb{Q}) \longrightarrow \operatorname{Aut}(E[n]).$$

Notice that since E[n] is a free  $\mathbb{Z}/n\mathbb{Z}$ -module of rank 2, fixing a basis  $\{P,Q\}$  of E[n], we identify  $\operatorname{Aut}(E[n])$  with  $\operatorname{GL}_2(\mathbb{Z}/n\mathbb{Z})$ . Then we rewrite the above Galois representation as

$$\rho_{E,n}: \operatorname{Gal}(\overline{\mathbb{Q}}/\mathbb{Q}) \longrightarrow \operatorname{GL}_2(\mathbb{Z}/n\mathbb{Z}).$$

Therefore we can view  $\rho_{E,n}(\operatorname{Gal}(\overline{\mathbb{Q}}/\mathbb{Q}))$  as a subgroup of  $\operatorname{GL}_2(\mathbb{Z}/n\mathbb{Z})$ , determined uniquely up to conjugacy, and denoted by  $G_E(n)$  in the sequel. Moreover,  $\mathbb{Q}(E[n]) = \{x,y \mid (x,y) \in E[n]\}$  is Galois and since  $\ker \rho_{E,n} = \operatorname{Gal}(\overline{\mathbb{Q}}/\mathbb{Q}(E[n]))$ , we deduce that  $G_E(n) \simeq \operatorname{Gal}(\mathbb{Q}(E[n])/\mathbb{Q})$ .

Let  $R = (x(R), y(R)) \in E[n]$  and  $\mathbb{Q}(R) = \mathbb{Q}(x(R), y(R)) \subseteq \mathbb{Q}(E[n])$ , then by Galois theory there exists a subgroup  $\mathcal{H}_R$  of  $\operatorname{Gal}(\mathbb{Q}(E[n])/\mathbb{Q})$  such that  $\mathbb{Q}(R) = \mathbb{Q}(E[n])^{\mathcal{H}_R}$ . In particular, if we denote by  $H_R$  the image of  $\mathcal{H}_R$  in  $\operatorname{GL}_2(\mathbb{Z}/n\mathbb{Z})$ , we have:

- $[\mathbb{Q}(R):\mathbb{Q}]=[G_E(n):H_R].$
- $\operatorname{Gal}(\widehat{\mathbb{Q}(R)}/\mathbb{Q}) \simeq G_E(n)/N_{G_E(n)}(H_R)$ , where  $\widehat{\mathbb{Q}(R)}$  denotes the Galois closure of  $\mathbb{Q}(R)$  in  $\overline{\mathbb{Q}}$ , and  $N_{G_E(n)}(H_R)$  denotes the normal core of  $H_R$  in  $G_E(n)$ .

We have deduced the following result.

**Lemma 5.** Let  $E/\mathbb{Q}$  be an elliptic curve, n a positive integer and  $R \in E[n]$ . Then  $[\mathbb{Q}(R) : \mathbb{Q}]$  divides  $|G_E(n)|$ . In particular  $[\mathbb{Q}(R) : \mathbb{Q}]$  divides  $|GL_2(\mathbb{Z}/n\mathbb{Z})|$ .

In practice, given the conjugacy class of  $G_E(n)$  we can deduce the relevant arithmeticalgebraic properties of the fields of definition of the n-torsion points: since E[n] is a free  $\mathbb{Z}/n\mathbb{Z}$ -module of rank 2, we can identify the n-torsion points with  $(a,b) \in (\mathbb{Z}/n\mathbb{Z})^2$  (i.e. if  $R \in E[n]$  and  $\{P,Q\}$  is a  $\mathbb{Z}/n\mathbb{Z}$ -basis of E[n], then there exist  $a,b \in \mathbb{Z}/n\mathbb{Z}$  such that R = aP + bQ). Therefore  $H_R$  is the stabilizer of (a,b) by the action of  $G_E(n)$  on  $(\mathbb{Z}/n\mathbb{Z})^2$ . In order to compute all the possible degrees (jointly with the Galois group of its Galois closure in  $\overline{\mathbb{Q}}$ ) of the fields of definition of the n-torsion points we run over all the elements of  $(\mathbb{Z}/n\mathbb{Z})^2$  of order n.

Now, observe that  $\langle R \rangle \subset E[n]$  is a subgroup of order n. Equivalently,  $E/\mathbb{Q}$  admits a cyclic n-isogeny (non-rational in general). The field of definition of this isogeny is denoted by  $\mathbb{Q}(\langle R \rangle)$ . A similar argument could be used to obtain a description of  $\mathbb{Q}(\langle R \rangle)$  using Galois theory. In particular, if  $\langle R \rangle$  is  $\operatorname{Gal}(\overline{\mathbb{Q}}/\mathbb{Q})$ -stable then the isogeny is defined over  $\mathbb{Q}$ . To compute the relevant arithmetic-algebraic properties of the field  $\mathbb{Q}(\langle R \rangle)$  is similar to the case  $\mathbb{Q}(R)$ , replacing the pair (a,b) by the  $\mathbb{Z}/n\mathbb{Z}$ -module of rank 1 generated by (a,b) in  $(\mathbb{Z}/n\mathbb{Z})^2$ .

| Sutherland                        | Zywina           | $d_0$ | $d_v$   | d     |
|-----------------------------------|------------------|-------|---------|-------|
| 2Cs                               | $G_1$            | 1     | 1       | 1     |
| 2B                                | $G_2$            | 1     | 1, 2    | 2     |
| 2Cn                               | $G_3$            | 3     | 3       | 3     |
| $\operatorname{GL}(2,\mathbb{Z})$ | $/2\mathbb{Z}$ ) | 3     | 3       | 6     |
| 3Cs.1.1                           | $H_{1,1}$        | 1     | 1, 2    | 2     |
| 3Cs                               | $G_1$            | 1     | 2, 4    | 4     |
| 3B.1.1                            | $H_{3,1}$        | 1     | 1, 6    | 6     |
| 3B.1.2                            | $H_{3,2}$        | 1     | 2, 3    | 6     |
| 3Ns                               | $G_2$            | 2     | 4       | 8     |
| 3B                                | $G_3$            | 1     | 2, 6    | 12    |
| 3Nn                               | $G_4$            | 4     | 8       | 16    |
| $\operatorname{GL}(2,\mathbb{Z})$ | $/3\mathbb{Z}$ ) | 4     | 8       | 48    |
| 11B.1.4                           | $H_{1,1}$        | 1     | 5, 110  | 110   |
| 11B.1.5                           | $H_{2,1}$        | 1     | 5, 110  | 110   |
| 11B.1.6                           | $H_{2,2}$        | 1     | 10, 55  | 110   |
| 11B.1.7                           | $H_{1,2}$        | 1     | 10, 55  | 110   |
| 11B.10.4                          | $G_1$            | 1     | 10, 110 | 220   |
| 11B.10.5                          | $G_2$            | 1     | 10, 110 | 220   |
| 11Nn                              | $G_3$            | 12    | 120     | 240   |
| $\mathrm{GL}(2,\mathbb{Z}/$       | $'11\mathbb{Z})$ | 12    | 120     | 13200 |

Table 1 Image groups  $G_E(p)$ , for  $p \in \{2, 3, 5, 11\}$ , for non-CM elliptic curves  $E/\mathbb{Q}$ .

| Sutherland                  | Zywina           | $d_0$ | $d_v$   | d   |
|-----------------------------|------------------|-------|---------|-----|
| 5Cs.1.1                     | $H_{1,1}$        | 1     | 1, 4    | 4   |
| 5Cs.1.3                     | $H_{1,2}$        | 1     | 2, 4    | 4   |
| 5Cs.4.1                     | $G_1$            | 1     | 2, 4, 8 | 8   |
| 5Ns.2.1                     | $G_3$            | 2     | 8, 16   | 16  |
| 5Cs                         | $G_2$            | 1     | 4       | 16  |
| 5B.1.1                      | $H_{6,1}$        | 1     | 1, 20   | 20  |
| 5B.1.2                      | $H_{5,1}$        | 1     | 4, 5    | 20  |
| 5B.1.4                      | $H_{6,2}$        | 1     | 2, 20   | 20  |
| 5B.1.3                      | $H_{5,2}$        | 1     | 4, 10   | 20  |
| 5Ns                         | $G_4$            | 2     | 8, 16   | 32  |
| 5B.4.1                      | $G_6$            | 1     | 2, 20   | 40  |
| 5B.4.2                      | $G_5$            | 1     | 4, 10   | 40  |
| 5Nn                         | $G_7$            | 6     | 24      | 48  |
| 5B                          | $G_8$            | 1     | 4, 20   | 80  |
| 5S4                         | $G_9$            | 6     | 24      | 96  |
| $\mathrm{GL}(2,\mathbb{Z})$ | $/5\mathbb{Z}$ ) | 6     | 24      | 480 |
|                             |                  |       |         |     |

In the case  $E/\mathbb{Q}$  be a non-CM elliptic curve and  $p \leq 11$  be a prime, Zywina [34] has described all the possible subgroups of  $GL_2(\mathbb{Z}/p\mathbb{Z})$  that occur as  $G_E(p)$ .

For each possible subgroup  $G_E(p) \subseteq GL_2(\mathbb{Z}/p\mathbb{Z})$  for  $p \in \{2, 3, 5, 11\}$ , Table 1 lists in the first and second column the corresponding labels in Sutherland and Zywina notations, and the following data:

- $d_0$ : the index of the largest subgroup of  $G_E(p)$  that fixes a  $\mathbb{Z}/p\mathbb{Z}$ -submodule of rank 1 of E[p]; equivalently, the degree of the minimal extension  $L/\mathbb{Q}$  over which E admits a L-rational p-isogeny.
- $d_v$ : is the index of the stabilizers of  $v \in (\mathbb{Z}/p\mathbb{Z})^2$ ,  $v \neq (0,0)$ , by the action of  $G_E(p)$  on  $(\mathbb{Z}/p\mathbb{Z})^2$ ; equivalently, the degrees of the extension  $L/\mathbb{Q}$  over which E has a L-rational point of order p.
- d: is the order of  $G_E(p)$ ; equivalently, the degree of the minimal extension  $L/\mathbb{Q}$  for which  $E[p] \subseteq E(L)$ .

Note that Table 1 is partially extracted from Table 3 of [33]. The difference is that [33, Table 3] only lists the minimum of  $d_v$ , which is denoted by  $d_1$  therein.

For the CM case, Zywina [34, §1.9] gives a complete description of  $G_E(p)$  for any prime p.

### 3. Isogenies

In this paper a rational *n*-isogeny of an elliptic curve  $E/\mathbb{Q}$  is a (surjective) morphism  $E \longrightarrow E'$  defined over  $\mathbb{Q}$  where  $E'/\mathbb{Q}$  and the kernel is cyclic of order n. The rational

n-isogenies of elliptic curves over  $\mathbb{Q}$ , have been described completely in the literature, for all  $n \geq 1$ . The following result gives all the possible values of n.

**Theorem 6** ([25,18–21]). Let  $E/\mathbb{Q}$  be an elliptic curve with a rational n-isogeny. Then  $n \leq 19$  or  $n \in \{21, 25, 27, 37, 43, 67, 163\}$ .

A direct consequence of the Galois theory applied to the theory of cyclic isogenies is the following (cf. Lemma 3.10 [4]).

**Lemma 7.** Let  $E/\mathbb{Q}$  be an elliptic curve such that  $E(K)[n] \simeq \mathcal{C}_n$  over a Galois extension  $K/\mathbb{Q}$ . Then E has a rational n-isogeny.

# 4. $\mathcal{P}$ -primary torsion subgroup

Let E/K be an elliptic curve defined over a number field K. For a given set of primes  $\mathcal{P} \subset \mathbb{Z}$ , let  $E(K)[\mathcal{P}^{\infty}]$  denote the  $\mathcal{P}$ -primary torsion subgroup of  $E(K)_{\text{tors}}$ , that is, the direct product of the p-Sylow subgroups of E(K) for  $p \in \mathcal{P}$ . If  $\mathcal{P} = \{p\}$ , let us denote by  $E(K)[p^{\infty}]$ .

**Proposition 8.** Let  $E/\mathbb{Q}$  be an elliptic curve and  $K/\mathbb{Q}$  be a quintic number field.

- (1) If P is a point of prime order p in E(K), then  $p \in \{2, 3, 5, 7, 11\}$ .
- (2) If E(K)[n] = E[n], then n = 2.
- **Proof.** (1) Lozano-Robledo [24] has determined that the set of primes p for which there exists a number field K of degree  $\leq 5$  and an elliptic curve  $E/\mathbb{Q}$  such that the p divides the order of  $E(K)_{\text{tors}}$  is given by  $S_{\mathbb{Q}}(5) = \{2, 3, 5, 7, 11, 13\}$ . Then to finish the proof we must remove the prime p = 13. This follows from Lemma 5 since 5 does not divide the order of  $GL_2(\mathbb{F}_{13})$ , that is  $2^5 \cdot 3^2 \cdot 7 \cdot 13$ .
- (2) Let E/K be the base change of E over the number field K. If  $E[n] \subseteq E(K)$  then  $\mathbb{Q}(\zeta_n) \subseteq K$ . In particular  $\varphi(n) \mid [K : \mathbb{Q}]$ . The only possibility if  $[K : \mathbb{Q}] = 5$  is n = 2.  $\square$
- 4.1. p-Primary torsion subgroup  $(p \neq 5, 11)$

**Lemma 9.** Let  $E/\mathbb{Q}$  be an elliptic curve and  $K/\mathbb{Q}$  a quintic number field. Then, for any prime  $p \neq 5, 11$ :

$$E(K)[p^{\infty}] = E(\mathbb{Q})[p^{\infty}].$$

In particular, if  $P \in E(K)[p^{\infty}]$  and  $p^n$  is its order, then  $n \leq 3, 2, 1$ , if p = 2, 3, 7, respectively, and n = 0 otherwise.

**Proof.** Let  $P \in E(K)[p^n]$ . By Lemma 5,  $[\mathbb{Q}(P):\mathbb{Q}]$  divides  $|\operatorname{GL}_2(\mathbb{Z}/p^n\mathbb{Z})| = p^{4n-3}(p^2-1)(p-1)$ . If  $p \in \{2,3,7\}$  then  $\mathbb{Q}(P)=\mathbb{Q}$ . Together with Proposition 8 (2), we deduce  $E(K)[p^{\infty}] = E(\mathbb{Q})[p^{\infty}]$ . If  $p \geq 13$  and n > 0, then  $[p^{n-1}]P \in E(K)$  is a point or order p, a contradiction with Proposition 8 (1). That is,  $E(K)[p^{\infty}] = E(\mathbb{Q})[p^{\infty}] = \{\mathcal{O}\}$  if  $p \geq 13$ .  $\square$ 

# 4.2. 5-Primary torsion subgroup

**Lemma 10.** Let  $E/\mathbb{Q}$  be an elliptic curve and  $K/\mathbb{Q}$  a quintic number field. Then

$$E(K)[5^{\infty}] \lesssim \mathcal{C}_{25}$$
.

In particular if  $E(K)[5^{\infty}] \neq \{\mathcal{O}\}$  then E has non-CM. Moreover:

- (1) if  $E(\mathbb{Q})[5^{\infty}] \simeq \mathcal{C}_5$ , then  $G_E(5)$  is labeled 5B.1.1 or 5Cs.1.1;
- (2) if  $E(K)[5^{\infty}] \simeq C_5$  and  $E(\mathbb{Q})[5^{\infty}] = \{\mathcal{O}\}$ , then  $G_E(5)$  is labeled 5B.1.2;
- (3) if  $E(K)[5^{\infty}] \simeq \mathcal{C}_{25}$ , then  $E(\mathbb{Q})[5^{\infty}] \simeq \mathcal{C}_5$ . Moreover, K is Galois if  $G_E(5)$  is labeled 5B.1.1.

**Proof.** First suppose that E has CM. Then by the classification  $\Phi_{\mathbb{Q}}^{\mathrm{CM}}(5)$  we deduce that  $E(K)[5^{\infty}] = \{\mathcal{O}\}$ . From now on we assume that E is non-CM. First, it is not possible  $E[5] \subseteq E(K)$  by Proposition 8 (2). Now, the characterization of  $\Phi(1)$  tells us that  $E(\mathbb{Q})[5^{\infty}] \lesssim \mathcal{C}_5$ . We observe in Table 1 that  $d_v = 1$  (resp.  $d_v = 5$ ) for some  $v \in (\mathbb{Z}/5\mathbb{Z})^2$  of order 5 if and only if  $G_E(5)$  is labeled by 5Cs.1.1 or 5B.1.1 (resp. 5B.1.2), which proves (1) (resp. (2)). We are going to prove that  $E(K)[5^{\infty}] \lesssim \mathcal{C}_{25}$ . First, we prove (3). Assume that there exists a quintic number field K such that  $E(K)[25] = \langle P \rangle \simeq \mathcal{C}_{25}$ . Then  $G_E(25)$  satisfies:

$$G_E(25) \equiv G_E(5) \pmod{5}$$
 and  $[G_E(25) : H_P] = 5$ .

Note that in general we do not have an explicit description of  $G_E(25)$ , but using Magma [2] we do a simulation with subgroups of  $GL_2(\mathbb{Z}/25\mathbb{Z})$ .

First assume that  $G_E(5)$  is labeled by 5B.1.2, then  $G_E(5)$  is conjugate in  $GL_2(\mathbb{Z}/5\mathbb{Z})$  to the subgroup (cf. [34, Theorem 1.4 (iii)])

$$H_{5,1} = \left\langle \begin{pmatrix} 2 & 0 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \right\rangle \subset \mathrm{GL}_2(\mathbb{Z}/5\mathbb{Z}).$$

Since we do not have a characterization of  $G_E(25)$ , we check using Magma that for any subgroup G of  $GL_2(\mathbb{Z}/25\mathbb{Z})$  satisfying  $G \equiv H \pmod{5}$  for some conjugate H of  $H_{5,1}$  in  $GL_2(\mathbb{Z}/5\mathbb{Z})$ , and for any  $v \in (\mathbb{Z}/25\mathbb{Z})^2$  of order 25, we have  $[G:G_v] \neq 5$  (where  $G_v$  be the stabilizer of v by the action of G on  $(\mathbb{Z}/25\mathbb{Z})^2$ ). Therefore for any point  $P \in E[25]$  it has  $[G_E(25):H_P] \neq 5$ . In particular this proves that if  $G_E(5)$  is labeled by 5B.1.2,

then there is not  $5^n$ -torsion over a quintic number field, for n > 1. This finishes the first part of (3).

Now assume that  $G_E(5)$  is labeled by 5B.1.1. That is,  $G_E(5)$  is conjugate in  $GL_2(\mathbb{Z}/5\mathbb{Z})$  to the subgroup (cf. [34, Theorem 1.4 (iii)])

$$H_{6,1} = \left\langle \begin{pmatrix} 1 & 0 \\ 0 & 2 \end{pmatrix}, \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \right\rangle \subset GL_2(\mathbb{Z}/5\mathbb{Z}).$$

A similar argument as the one used before, we check that for any subgroup G of  $GL_2(\mathbb{Z}/25\mathbb{Z})$  satisfying  $G \equiv H \pmod 5$  for some conjugate H of  $H_{6,1}$  in  $GL_2(\mathbb{Z}/5\mathbb{Z})$ , and for any  $v \in (\mathbb{Z}/25\mathbb{Z})^2$  of order 25 such that  $[G:G_v]=5$  we have that  $G/N_G(G_v) \simeq \mathcal{C}_5$ . Therefore we have deduced that if  $E/\mathbb{Q}$  is an elliptic curve such that  $G_E(5)$  is labeled by 5B.1.1 and there exists a quintic number field K with a K-rational point of order 25, then K is Galois. Note that in this case there does not exist a point of order  $5^n$  for n > 2 over any quintic number field: suppose that K' is a quintic number field such that there exists  $P \in E(K')[5^n]$ . Then  $[5^{n-2}]P \in E(K')[25]$ . Therefore K' is Galois and, by Lemma 7, E has a rational  $5^n$ -isogeny. In contradiction with Theorem 6. This completes the proof of (3).

Finally we assume that  $G_E(5)$  is labeled by 5Cs.1.1. That is,  $G_E(5)$  is conjugate in  $GL_2(\mathbb{Z}/5\mathbb{Z})$  to the subgroup (cf. [34, Theorem 1.4 (iii)])

$$H_{1,1} = \left\langle \begin{pmatrix} 1 & 0 \\ 0 & 2 \end{pmatrix} \right\rangle \subset GL_2(\mathbb{Z}/5\mathbb{Z}).$$

In this case using a similar algorithm as above we check that if there exists a quintic number field K such that  $E(K)[25] \simeq \mathcal{C}_{25}$  then K is Galois or the Galois closure of K in  $\overline{\mathbb{Q}}$  is isomorphic to  $\mathcal{F}_5$ , where  $\mathcal{F}_5$  denotes the Fröbenius group of order 20. In the former case, this proves that there does not exist a point of order  $5^n$  for n > 2 over any Galois quintic number field. Now, assume that K is not Galois, then  $G_E(125)$  satisfies:

$$\begin{split} G_E(125) &\equiv G_E(5) \pmod{5} &, & [G_E(125):H_P] = 5, \\ G_E(125) &\equiv G_E(25) \pmod{25} &, & [G_E(25):H_{5P}] = 5. \end{split}$$

We check that for any subgroup G of  $GL_2(\mathbb{Z}/125\mathbb{Z})$  satisfying  $G \equiv H \pmod{5}$  for some conjugate H of  $H_{1,1}$  in  $GL_2(\mathbb{Z}/5\mathbb{Z})$ , and for any  $v \in (\mathbb{Z}/125\mathbb{Z})^2$  of order 125 such that  $[G:G_v]=5$  and  $G/N_G(G_v)\simeq \mathcal{F}_5$  we obtain that  $[G':G'_w]\neq 5$  for any  $w\in (\mathbb{Z}/25\mathbb{Z})^2$  of order 25; where  $G'\equiv G \pmod{25}$ . We deduce that there do not exist points of order 125 over quintic number fields. So,  $E(K)[5^{\infty}]\lesssim \mathcal{C}_{25}$ .

This finishes the proof.  $\Box$ 

#### 4.3. 11-Primary torsion subgroup

**Lemma 11.** Let  $E/\mathbb{Q}$  be an elliptic curve and  $K/\mathbb{Q}$  a quintic number field. Then

$$E(K)[11^{\infty}] \lesssim \mathcal{C}_{11}$$
.

In particular, if  $E(K)[11^{\infty}] \neq \{\mathcal{O}\}$  then E is labeled 121a2, 121c2, or 121b1,  $K = \mathbb{Q}(\zeta_{11})^+$  and  $E(K)_{\text{tors}} \simeq \mathcal{C}_{11}$ .

**Proof.** First, suppose that  $E/\mathbb{Q}$  is non-CM. Then Table 1 shows that there exists a point of order 11 over a quintic number field if and only if  $G_E(11)$  is labeled 11B.1.4 or 11B.1.5. Or in Zywina notation,  $G_E(11)$  is conjugate in  $GL_2(\mathbb{Z}/11\mathbb{Z})$  to the subgroups  $H_{1,1}$  or  $H_{2,1}$ . Then Zywina [34, Theorem 1.6(v)] proved that E is isomorphic (over  $\mathbb{Q}$ ) to 121a2 or 121c2 respectively.

Now, let us suppose that  $E/\mathbb{Q}$  has CM. Recall that there are thirteen  $\mathbb{Q}$ -isomorphic classes of elliptic curve with CM (cf. [32, A §3]), each of them has CM by an order in the imaginary quadratic field with discriminant -D, where  $D \in \{3, 4, 7, 8, 11, 19, 43, 67, 163\}$ . In this context, Zywina [34, §1.9] gives a complete characterization of the conjugacy class of  $G_E(p)$  in  $\mathrm{GL}_2(\mathbb{Z}/p\mathbb{Z})$ , for any prime p. Let us apply these results for the case p=11. The proof splits on whether  $j(E) \neq 0$  (Proposition 1.14 [34]) or j(E)=0 (Proposition 1.16 (iv) [34]):

- $j(E) \neq 0$ . Depending whether -D is a quadratic residue modulo 11:
  - if  $D \in \{7, 8, 19, 43\}$  then  $G_E(11)$  is conjugate to 11Ns.
  - if  $D \in \{3, 4, 6, 7, 163\}$  then  $G_E(11)$  is conjugate to 11Nn.
  - if D = 11:
    - \* if E is 121b1 then  $G_E(11)$  is conjugate to 11B.1.3,
    - \* if E is 121b2 then  $G_E(11)$  is conjugate to 11B.1.8,
    - \* otherwise  $G_E(11)$  is conjugate to 11B.10.3.
- j(E) = 0. Then  $G_E(11)$  is conjugate to 11Nn.1.4 or 11Ns.

The following table lists for each possible  $G_E(11)$  as above, the value  $d_1$ , the minimum of the indexes of the stabilizers of  $v \in (\mathbb{Z}/11\mathbb{Z})^2$ ,  $v \neq (0,0)$ , by the action of  $G_E(11)$  on  $(\mathbb{Z}/11\mathbb{Z})^2$ ; equivalently, the minimum degree of the extension  $L/\mathbb{Q}$  over which E has a L-rational point of order 11.

| 11Ns | 11Nn | 11B.1.3 | 11B.1.8 | 11B.10.3 | 11Nn.1.4 |
|------|------|---------|---------|----------|----------|
| 20   | 120  | 5       | 10      | 10       | 40       |

The above table proves that  $E/\mathbb{Q}$  has a point of order 11 over a quintic number fields if and only if E is the curve 121b1.

Finally, Table 3 shows that the torsion of the elliptic curves 121a2, 121c2 and 121b1 grows in a quintic number field to  $C_{11}$  only over the field  $\mathbb{Q}(\zeta_{11})^+$ , and over that field the torsion is  $C_{11}$ .  $\square$ 

**Remark.** If in the above statement the quintic number field is replaced by a number field K of degree d such that  $d \neq 5$  and  $d \leq 9$ , then there does not exist any elliptic curve  $E/\mathbb{Q}$  with a point of order 11 over K.

4.4.  $\{p,q\}$ -Primary torsion subgroup

**Lemma 12.** Let  $E/\mathbb{Q}$  be an elliptic curve and  $K/\mathbb{Q}$  a quintic number field. Let  $p, q \in \{2, 3, 5, 7, 11\}$ ,  $p \neq q$ , such that pq divides the order of  $E(K)_{tors}$ . Then

$$E(\mathbb{Q})[\{p,q\}^{\infty}] = E(K)[\{p,q\}^{\infty}] \quad or \quad E(K)[\{p,q\}^{\infty}] \simeq \mathcal{C}_{10}.$$

In the former case,  $E(\mathbb{Q})_{\text{tors}} = E(\mathbb{Q})[\{p,q\}^{\infty}] \simeq G$ , where  $G \in \{\mathcal{C}_6, \mathcal{C}_{10}, \mathcal{C}_2 \times \mathcal{C}_6\}$ .

**Proof.** First we may suppose  $p \neq 11$  by Lemma 11. Assume that  $p, q \in \{2, 3, 7\}$ , then by Lemma 9 we have that the  $\{p, q\}$ -primary torsion is defined over  $\mathbb{Q}$ . That is,  $E(K)[\{p, q\}^{\infty}] = E(\mathbb{Q})[\{p, q\}^{\infty}]$ . Let  $G \in \Phi(1)$  such that  $E(\mathbb{Q})_{\text{tors}} \simeq G$ . Then  $G \in \{\mathcal{C}_6, \mathcal{C}_2 \times \mathcal{C}_6\}$ .

It remains to prove the case p=5 and  $q \in \{2,3,7\}$ . Without loss of generality we can assume that the 5-primary torsion is not defined over  $\mathbb{Q}$ , otherwise  $E(K)[\{5,q\}^{\infty}] = E(\mathbb{Q})[\{5,q\}^{\infty}]$  and the unique possibility is  $\mathcal{C}_{10}$ . In particular, by Lemma 10 we have that E has non-CM and the 5-primary torsion of E over K is cyclic of order 5 or 25, and  $E(\mathbb{Q})[5^{\infty}] = \{\mathcal{O}\}$  or  $E(\mathbb{Q})[5^{\infty}] \simeq \mathcal{C}_5$  respectively. Depending on  $q \in \{2,3,7\}$  we have:  $\bullet q = 2$ :

- \*  $E(K)[5^{\infty}] \simeq \mathcal{C}_5$ . If  $E(K)[2^{\infty}] \simeq \mathcal{C}_2$  then there are infinitely many elliptic curves such that  $E(K)[\{2,5\}^{\infty}] \simeq \mathcal{C}_{10}$  (see Proposition 15). In fact, the above 2-primary torsion is the unique possibility since if  $\mathcal{C}_4 \lesssim E(\mathbb{Q})$  then  $\mathcal{C}_{20} \not\lesssim E(K)$  and if  $E[2] \lesssim E(\mathbb{Q})$  then  $\mathcal{C}_2 \times \mathcal{C}_{10} \not\lesssim E(K)$  (see Remark below Theorem 7 of [10]).
- \*  $E(K)[5^{\infty}] \simeq \mathcal{C}_{25}$ . Assume that  $E(K)[2] \neq \{\mathcal{O}\}$ . If  $G_E(5)$  is labeled 5B.1.1 then K is Galois and therefore, by Lemma 7, E has a rational 50-isogeny, that is not possible by Theorem 6. Now suppose that  $G_E(5)$  is labeled 5Cs.1.1. Since  $E(K)[2^{\infty}] = E(\mathbb{Q})[2^{\infty}]$  and  $E(\mathbb{Q}(\zeta_5)) = E[5]$  (by Table 1) we deduce  $\mathcal{C}_5 \times \mathcal{C}_{10} \lesssim E(\mathbb{Q}(\zeta_5))$ . But this is not possible since Bruin and Najman [3, Theorem 6] have proved that any elliptic curve defined over  $\mathbb{Q}(\zeta_5)$  have torsion subgroup isomorphic to a group in the following set

$$\Phi(\mathbb{Q}(\zeta_5)) = \{ C_n \mid n = 1, \dots, 10, 12, 15, 16 \} \cup \{ C_2 \times C_{2m} \mid m = 1, \dots, 4 \} \cup \{ C_5 \times C_5 \}.$$

• q=3: A necessary condition if 15 divides  $E(K)_{\text{tors}}$  is that the 5-torsion is not defined over  $\mathbb{Q}$  and the 3-torsion is defined over  $\mathbb{Q}$ . By Lemma 10,  $G_E(5)$  is labeled 5B.1.2. Zywina [34, Theorem 1.4] has showed that its j-invariant is of the form

$$J_5(t) = \frac{(t^4 + 228t^3 + 494t^2 - 228t + 1)^3}{t(t^2 - 11t - 1)^5}, \quad \text{for some } t \in \mathbb{Q}.$$

On the other hand, we have proved that the 3-torsion is defined over Q. Then, by Table 1,  $G_E(3)$  is labeled 3Cs.1.1 or 3B.1.1. Again Zywina [34, Theorem 1.2] characterizes the j-invariant of  $E/\mathbb{Q}$  depending on the conjugacy class of  $G_E(3)$ :

\* 3Cs.1.1:  $J_1(s) = 27 \frac{(s+1)^3(s+3)^3(s^2+3)^3}{s^3(s^2+3s+3)^3}$ , for some  $s \in \mathbb{Q}$ . We must have an equality of j-invariants:  $J_1(s) = J_5(t)$ . In particular, grouping cubes we deduce:

$$t(t^2 - 11t - 1)^2 = r^3$$
, for some  $t, r \in \mathbb{Q}$ .

This equation defines a curve C of genus 2, which in fact transforms (according to Magma) to  $C': y^2 = x^6 + 22x^3 + 125$ . The jacobian of C' has rank 0, so we can use the Chabauty method, and determine that the points on C' are

$$C'(\mathbb{Q}) = \{(1:\pm 1:0)\}.$$

Therefore C' has no affine points and we obtain

$$C(\mathbb{Q}) = \{(0,0)\} \cup \{(1:0:0)\}.$$

Then t=0, and since t divides the denominator of  $J_5(t)$  we have reached a contra-

diction to the existence of such curve E. \* 3B.1.1:  $J_3(s) = 27 \frac{(s+1)(s+9)^3}{s^3}$ , for some  $s \in \mathbb{Q}$ . A similar argument with the equality  $J_3(s) = J_5(t)$  gives us the equation:

$$C: 27(s+1)(s+9)^3t(t^2-11t-1)^5 = s^3(t^4+228t^3+494t^2-228t+1)^3$$

In this case the above equation defines a genus 1 curve which has the following points:

$$\{(-2/27, -1/8), (-27/2, -2), (-27/2, 1/2), (0, 0), (-2/27, 8)\}\$$
  
 $\cup \{(0:1:0), (1/27:1:0), (1:0:0)\}.$ 

The curve C is  $\mathbb{Q}$ -isomorphic to the elliptic curve 15a3, which Mordell-Weil group (over  $\mathbb{Q}$ ) is of order 8. Therefore we deduce that s=-2/27,-27/2, and in particular

$$j(E) \in \{-5^2/2, -5^2 \cdot 241^3/2^3\}.$$

Therefore there are two  $\overline{\mathbb{Q}}$ -isomorphic classes of elliptic curves. Each pair of elliptic curves in the same  $\overline{\mathbb{Q}}$ -isomorphic class is related by a quadratic twist. Najman [28]

<sup>&</sup>lt;sup>2</sup> A remarkable fact is that this genus 2 curve is new modular of level 45 (see [9]).

has made an exhaustive study of how the torsion subgroup changes upon quadratic twists. In particular Proposition 1 (c) [28] asserts that if  $E/\mathbb{Q}$  is neither 50a3 nor 450b4, and it satisfies  $E(\mathbb{Q})_{\text{tors}} \simeq \mathcal{C}_3$  and the (-3)-quadratic twist  $E^{-3}$ , satisfies  $E^{-3}(\mathbb{Q})_{\text{tors}} \not\simeq \mathcal{C}_3$ , then for any quadratic twist we must have  $E^d(\mathbb{Q}) \simeq \mathcal{C}_1$  for all  $d \in \mathbb{Q}^*/(\mathbb{Q}^*)^2$ . We apply this result to the elliptic curves 50a1 and 450b2 that have j-invariant  $-5^2/2$  and  $-5^2 \cdot 241^3/2^3$  respectively. Both curves have cyclic torsion subgroup (over  $\mathbb{Q}$ ) of order 3 and the corresponding torsion subgroup of the (-3)-quadratic twist is trivial. Thus we are left with two elliptic curves (50a1 and 450b2) to finish the proof. Applying the algorithm described in Section 7 we compute that the 5-torsion does not grow over any quintic number field for both curves.

• q = 7. Similar to the case q = 3, we deduce that  $E/\mathbb{Q}$  has the 7-torsion defined over  $\mathbb{Q}$  and  $G_E(5)$  is labeled 5B.1.2. Looking at Table 1 we deduce that  $E/\mathbb{Q}$  has a rational 5-isogeny, since  $d_0 = 1$  for 5B.1.2. Then, since  $E/\mathbb{Q}$  has a point of order 7 defined over  $\mathbb{Q}$ , there exists a rational 35-isogeny, which contradicts Theorem 6.  $\square$ 

# 4.5. $\{p,q,r\}$ -Primary torsion subgroup

**Lemma 13.** Let  $E/\mathbb{Q}$  be an elliptic curve and  $K/\mathbb{Q}$  a quintic number field. Let  $p,q,r \in \{2,3,5,7,11\}$ ,  $p \neq q \neq r$ , such that pqr divides the order of  $E(K)_{\text{tors}}$ . Then  $E(K)[\{p,q,r\}^{\infty}] = \{\mathcal{O}\}$ .

**Proof.** Lemma 12 shows that there do not exist three different primes p, q, r such that pqr divides the order of  $E(K)_{tors}$ .  $\square$ 

### 5. Proof of Theorems 1, 2 and 3

We are ready to prove Theorems 1, 2 and 3.

**Proof of Theorem 1.** Since we have  $\Phi_{\mathbb{Q}}(1) \subseteq \Phi_{\mathbb{Q}}(5)$ , let us prove that the unique torsion structures that remain to add to  $\Phi_{\mathbb{Q}}(1)$  to obtain  $\Phi_{\mathbb{Q}}(5)$  are  $\mathcal{C}_{11}$  and  $\mathcal{C}_{25}$ . Let  $H \in \Phi_{\mathbb{Q}}(5)$  be such that  $H \notin \Phi_{\mathbb{Q}}(1)$ . Lemma 12 shows that  $|H| = p^n$ , for some prime p and a positive integer n. Now, Lemma 9 shows that  $p \in \{5, 11\}$ . If p = 11 then n = 1 by Lemma 11. If p = 5 then n = 2 by Lemma 10, and an example with torsion subgroup isomorphic to  $\mathcal{C}_{25}$  is given in Table 3. This finish the proof for the set  $\Phi_{\mathbb{Q}}(5)$ .

Now the CM case. Notice that  $\Phi_{\mathbb{Q}}^{CM}(1) \subseteq \Phi_{\mathbb{Q}}^{CM}(5) \subseteq \Phi^{CM}(5)$ . We have that the unique torsion structure that belongs to  $\Phi^{CM}(5)$  and not to  $\Phi_{\mathbb{Q}}^{CM}(1)$  is  $\mathcal{C}_{11}$ . But in Lemma 11 we have proved that the elliptic curve 121b1 has torsion subgroup isomorphic to  $\mathcal{C}_{11}$  over  $\mathbb{Q}(\zeta_{11})^+$ . Therefore  $\Phi_{\mathbb{Q}}^{CM}(5) = \Phi^{CM}(5)$ . This finishes the proof.  $\square$ 

The determination of  $\Phi_{\mathbb{O}}(5,G)$  will rest on the following result:

**Proposition 14.** Let  $E/\mathbb{Q}$  be an elliptic curve and  $K/\mathbb{Q}$  a quintic number field such that  $E(\mathbb{Q})_{\text{tors}} \simeq G$  and  $E(K)_{\text{tors}} \simeq H$ .

- (1) Let  $p \in \{2, 3, 7\}$  and G of order a power of p, then H = G.
- (2) If  $H = C_{25}$ , then  $G = C_5$ .

**Proof.** The item (1) follows from Lemma 9 and (2) from Lemma 10 (3).  $\Box$ 

**Proof of Theorem 2.** Let  $E/\mathbb{Q}$  be an elliptic curve and  $K/\mathbb{Q}$  a quintic number field such that

$$E(\mathbb{Q})_{\text{tors}} \simeq G$$
 and  $E(K)_{\text{tors}} \simeq H$ .

The group  $H \in \Phi_{\mathbb{Q}}(5)$  (row in Table 2) that does not appear in some  $\Phi_{\mathbb{Q}}(5, G)$  for any  $G \in \Phi(1)$  (column in Table 2), with  $G \subseteq H$  can be ruled out using Proposition 14. In Table 2 we use:

- (1) and (2) to indicate which part of Proposition 14 is used,
- the symbol to mean the case is ruled out because  $G \not\subset H$ ,
- with a ✓, if the case is possible and, in fact, it occurs. There are two types of check marks in Table 2:
  - $-\checkmark$  (without a subindex) means that G=H.
  - √<sub>5</sub> means that  $H \neq G$  can be achieved over a quintic number field K, and we have collected examples of curves and quintic number fields in Table 3.

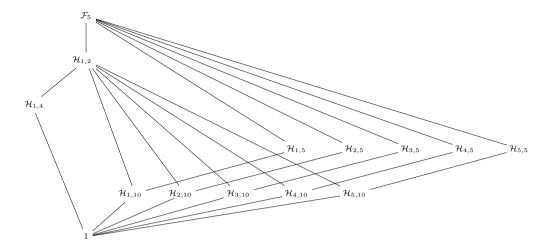
It remains to prove that there are infinitely many  $\mathbb{Q}$ -isomorphism classes of elliptic curves  $E/\mathbb{Q}$  with  $H \in \Phi_{\mathbb{Q}}(5, G)$ , except for the case  $H = \mathcal{C}_{11}$ . Note that for any elliptic curve  $E/\mathbb{Q}$  with  $E(\mathbb{Q})_{\text{tors}}$ , there is always an extension  $K/\mathbb{Q}$  of degree 5 such that  $E(K)_{\text{tors}} = E(\mathbb{Q})_{\text{tors}}$ . Then for any  $G \in \Phi(1) \cap \Phi_{\mathbb{Q}}(5)$  the statement is proved. Now, since  $\Phi_{\mathbb{Q}}(5) \setminus \Phi(1) = \{\mathcal{C}_{11}, \mathcal{C}_{25}\}$ , the only case that remains to prove is  $H = \mathcal{C}_{25}$ . This case will be proved in Proposition 16.  $\square$ 

**Proof of Theorem 3.** Let  $E/\mathbb{Q}$  be an elliptic curve such that the torsion grows to  $\mathcal{C}_{11}$  over a quintic number field K. Then by Lemma 11 we know that  $K = \mathbb{Q}(\zeta_{11})^+$  and the torsion does not grow for any other quintic number field. Therefore to finish the proof it remains to prove that there does not exist an elliptic curve  $E/\mathbb{Q}$  and two non-isomorphic quintic number fields  $K_1, K_2$  such that  $E(K_i)_{\text{tors}} \simeq H \in \Phi_{\mathbb{Q}}(5)$ , i = 1, 2, and  $E(\mathbb{Q})_{\text{tors}} \not\simeq H$ . Note that the compositum  $K_1K_2$  satisfies  $[K_1K_2:\mathbb{Q}] \leq [K_1:\mathbb{Q}][K_2:\mathbb{Q}] = 25$ . Now, by Theorem 2 we deduce  $H \in \{\mathcal{C}_5, \mathcal{C}_{10}, \mathcal{C}_{25}\}$ :

• First suppose that  $H \in \{C_5, C_{10}\}$ . Then by Lemma 10,  $G_E(5)$  is labeled 5B.1.2. Now, since  $K_1 \not\simeq K_2$  we deduce  $K_1K_2 = \mathbb{Q}(E[5])$  and, in particular,  $\operatorname{Gal}(\widehat{K_1K_2}/\mathbb{Q}) \simeq G_E(5)$ . In this case we have that  $G_E(5) \simeq \mathcal{F}_5$ , where  $\mathcal{F}_5$  denotes the Fröbenius group of order

Table 2 The table displays either if the case happens for G = H ( $\checkmark$ ), if it occurs over a quintic ( $\checkmark$ 5), if it is impossible because  $G \not\subset H$  (-) or if it is ruled out by Proposition 14 (1) and (2).

| H $G$                                 | ${\cal C}_1$ | $\mathcal{C}_2$ | $\mathcal{C}_3$ | $\mathcal{C}_4$ | $C_5$        | $C_6$        | $C_7$        | $\mathcal{C}_8$ | $\mathcal{C}_9$ | $\mathcal{C}_{10}$ | $\mathcal{C}_{12}$ | $\mathcal{C}_2 	imes \mathcal{C}_2$ | $\mathcal{C}_2 	imes \mathcal{C}_4$ | $\mathcal{C}_2 \times \mathcal{C}_6$ | $\mathcal{C}_2 	imes \mathcal{C}_8$ |
|---------------------------------------|--------------|-----------------|-----------------|-----------------|--------------|--------------|--------------|-----------------|-----------------|--------------------|--------------------|-------------------------------------|-------------------------------------|--------------------------------------|-------------------------------------|
| $C_1$                                 | <b>√</b>     | _               | _               | _               | _            | _            | _            | _               | _               | _                  | _                  | _                                   | _                                   | _                                    | _                                   |
| ${\cal C}_2$                          | (1)          | $\checkmark$    | _               | _               | _            | _            | _            | _               | _               | _                  | _                  | _                                   | _                                   | _                                    | _                                   |
| $\mathcal{C}_3$                       | (1)          | _               | $\checkmark$    | _               | _            | _            | _            | _               | _               | _                  | _                  | _                                   | _                                   | _                                    | _                                   |
| ${\cal C}_4$                          | (1)          | (1)             | _               | $\checkmark$    | _            | -            | _            | _               | _               | _                  | _                  | _                                   | _                                   | _                                    | _                                   |
| ${\cal C}_5$                          | $\sqrt{5}$   | _               | _               | _               | $\checkmark$ | _            | _            | _               | _               | _                  | _                  | _                                   | _                                   | _                                    | _                                   |
| $\mathcal{C}_6$                       | (1)          | (1)             | (1)             | _               | _            | $\checkmark$ | _            | _               | _               | _                  | _                  | _                                   | _                                   | _                                    | _                                   |
| $C_7$                                 | (1)          | _               | _               | _               | _            | _            | $\checkmark$ | _               | _               | _                  | _                  | _                                   | _                                   | _                                    | _                                   |
| $\mathcal{C}_8$                       | (1)          | (1)             | _               | (1)             | _            | _            | _            | $\checkmark$    | _               | _                  | _                  | _                                   | _                                   | _                                    | _                                   |
| $\mathcal{C}_9$                       | (1)          | _               | (1)             | _               | _            | _            | _            | _               | $\checkmark$    | _                  | _                  | _                                   | _                                   | _                                    | _                                   |
| ${\cal C}_{10}$                       | (1)          | $\sqrt{5}$      | _               | _               | (1)          | _            | _            | _               | _               | $\checkmark$       | _                  | _                                   | _                                   | _                                    | _                                   |
| ${\cal C}_{11}$                       | $\sqrt{5}$   | _               | _               | _               | _            | _            | _            | _               | _               | _                  | _                  | _                                   | _                                   | _                                    | _                                   |
| $\mathcal{C}_{12}$                    | (1)          | (1)             | (1)             | (1)             | _            | (1)          | _            | _               | _               | _                  | ✓                  | _                                   | _                                   | _                                    | _                                   |
| $C_{25}$                              | (2)          | _               | _               | _               | <b>√</b> 5   | _            | _            | _               | _               | _                  | _                  | _                                   | _                                   | _                                    | _                                   |
| ${\mathcal C}_2 	imes {\mathcal C}_2$ | (1)          | (1)             | _               | _               | _            | _            | _            | _               | _               | -                  | _                  | $\checkmark$                        | _                                   | _                                    | _                                   |
| ${\cal C}_2 	imes {\cal C}_4$         | (1)          | (1)             | _               | (1)             | _            | _            | _            | _               | _               | _                  | _                  | (1)                                 | $\checkmark$                        | _                                    | _                                   |
| $\mathcal{C}_2 	imes \mathcal{C}_6$   | (1)          | (1)             | (1)             | _               | _            | (1)          | _            | _               | _               | _                  | _                  | (1)                                 | _                                   | $\checkmark$                         | _                                   |
| ${\cal C}_2 	imes {\cal C}_8$         | (1)          | (1)             | _               | (1)             | _            | _            | _            | (1)             | _               | _                  | _                  | (1)                                 | (1)                                 | _                                    | ✓                                   |



**Diagram 1.** Lattice subgroup of  $\mathcal{F}_5$ .

20. Diagram 1 shows the lattice subgroup of  $\mathcal{F}_5$ , where  $\mathcal{H}_{k,i}$  denotes the k-th subgroup of index i in  $\mathcal{F}_5$ . Note that all the index 5 subgroups  $\mathcal{H}_{k,5}$  are conjugates in  $\mathcal{F}_5$ . That is, their associated fixed quintic number fields are isomorphic. This proves that  $K_1 \simeq K_2$ .

• Finally suppose that  $H = \mathcal{C}_{25}$ . In this case we use a similar argument as above but replacing  $G_E(5)$  by  $G_E(25)$ . We know by Lemma 10 that  $G_E(5)$  is labeled 5B.1.1 or 5Cs.1.1, but we do not have an explicit description of  $G_E(25)$ . For that reason we apply an analogous algorithm as the one used in the proof of Lemma 10 (3). By [34, Theorem 1.4 (iii)] we have that  $G_E(5)$  is conjugate in  $GL_2(\mathbb{Z}/5\mathbb{Z})$  to

$$H_{6,1} = \left\langle \begin{pmatrix} 1 & 0 \\ 0 & 2 \end{pmatrix}, \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \right\rangle \quad \text{or} \quad H_{1,1} = \left\langle \begin{pmatrix} 1 & 0 \\ 0 & 2 \end{pmatrix} \right\rangle,$$

depending if  $G_E(5)$  is labeled 5B.1.1 or 5Cs.1.1 respectively.

Suppose that  $K_1 \not\simeq K_2$ , then  $K_1K_2 = \mathbb{Q}(E[25])$ . Therefore  $\operatorname{Gal}(\widehat{K_1K_2}/\mathbb{Q}) \simeq G_E(25)$  and  $|G_E(25)| \leq 25$ . Now, we fix  $\mathcal{H}$  to be  $H_{6,1}$  or  $H_{1,1}$  and since we do not have an explicit description of  $G_E(25)$  we run a Magma program where the input is a subgroup G of  $GL_2(\mathbb{Z}/25\mathbb{Z})$  satisfying

- $|G| \le 25$ ,
- $G \equiv H \pmod{5}$  for some conjugate H of  $\mathcal{H}$  in  $GL_2(\mathbb{Z}/5\mathbb{Z})$ ,
- there exists  $v \in (\mathbb{Z}/25\mathbb{Z})^2$  of order 25 such that  $[G:G_v]=5$ .

If  $\mathcal{H} = H_{6,1}$  the above algorithm does not return any subgroup G. In the case  $\mathcal{H} = H_{1,1}$  all the subgroups returned are isomorphic either to  $\mathcal{F}_5$  or to  $\mathcal{C}_{20}$ . If  $G \simeq \mathcal{F}_5$  then we have proved that it has five index 5 subgroups, all of them at the same conjugation class. If  $G \simeq \mathcal{C}_{20}$  there is only one subgroup of index 5. We have reached a contradiction with  $K_1 \not\simeq K_2$ . This finishes the proof.  $\square$ 

# 6. Infinite families of rational elliptic curves where the torsion grows over a quintic number field

Let  $E/\mathbb{Q}$  be an elliptic curve and K a quintic number field such that  $E(\mathbb{Q})_{\text{tors}} \simeq G \in \Phi(1)$  and  $E(K)_{\text{tors}} \simeq H \in \Phi_{\mathbb{Q}}(5)$ . Theorem 3 shows that  $G \not\simeq H$  in the following cases:

$$(G, H) \in \{ (C_1, C_5), (C_1, C_{11}), (C_2, C_{10}), (C_5, C_{25}) \}.$$

By Lemma 11 we have that the pair  $(C_1, C_{11})$  only occurs in three elliptic curves. For the rest of the above pairs we are going to prove that there are infinitely many non-isomorphic classes of elliptic curves and quintic number fields satisfying each pair.

6.1. 
$$(C_1, C_5)$$
 and  $(C_2, C_{10})$ 

Let  $E/\mathbb{Q}$  be an elliptic curve and K a quintic number field such that  $E(\mathbb{Q})[5] = \{\mathcal{O}\}$  and  $E(K)[5] \simeq \mathcal{C}_5$ . Then Theorem 2 tells us that:

$$E(\mathbb{Q})_{\mathrm{tors}} \simeq \mathcal{C}_1$$
 and  $E(K)_{\mathrm{tors}} \simeq \mathcal{C}_5$ , or  $E(\mathbb{Q})_{\mathrm{tors}} \simeq \mathcal{C}_2$  and  $E(K)_{\mathrm{tors}} \simeq \mathcal{C}_{10}$ .

First notice that E has non-CM, since  $C_5$  is not a subgroup of any group in  $\Phi^{\text{CM}}(5)$ . Then Lemma 10 shows that  $G_E(5)$  is labeled 5B.1.2 ( $H_{5,1}$  in Zywina's notation). Then Zywina [34, Theorem 1.4(iii)] proved that there exists  $t \in \mathbb{Q}$  such that E is isomorphic (over  $\mathbb{Q}$ ) to  $\mathcal{E}_{5,t}$ :

$$\mathcal{E}_{5,t}: y^2 = x^3 - 27(t^4 + 228t^3 + 494t^2 - 228t + 1)x + 54(t^6 - 522t^5 - 10005t^4 - 10005t^2 + 522t + 1).$$

Table 1 shows that the degree of the field of definition of a point of order 5 in E is 4 or 5. Moreover, we can compute explicitly the number fields factorizing the 5-division polynomial  $\psi_5(x)$  attached to E. We define the following polynomial of degree 5:

$$\begin{aligned} p_5(x) &= x^5 + (-15t^2 - 450t - 15)x^4 + (90t^4 - 65880t^3 + 22860t^2 + 11880t + 90)x^3 \\ &+ (-270t^6 - 1015740t^5 - 7086690t^4 + 5725080t^3 - 4520610t^2 - 82620t - 270)x^2 \\ &+ (405t^8 - 8874360t^7 - 58872420t^6 - 253721160t^5 - 1423822050t^4 + 637175160t^3 \\ &+ 18109980t^2 + 223560t + 405)x - 243t^{10} - 22886226t^9 - 485812647t^8 \\ &+ 3223702152t^7 - 34272829350t^6 - 21920257260t^5 - 53316735462t^4 - 2958964344t^3 \\ &- 74726631t^2 - 211410t - 243. \end{aligned}$$

Then  $p_5(x)$  divides  $\psi_5(x)$  and we have  $E(\mathbb{Q}(\alpha))[5] = \langle R \rangle \simeq \mathcal{C}_5$ , where  $p_5(\alpha) = 0$  and  $\alpha$  is the x-coordinate of R.

Now suppose that  $E(\mathbb{Q})_{\text{tors}} \simeq \mathcal{C}_2$ , then  $G_E(2)$  is labeled 2B. Then Zywina [34, Theorem 1.1] proved that its j-invariant is of the form

$$J_2(s) = 256 \frac{(s+1)^3}{s}$$
, for some  $s \in \mathbb{Q}$ .

Therefore we have  $J_2(s) = j(\mathcal{E}_{5,t})$  for some  $s, t \in \mathbb{Q}$ . In other words we have a solution of the next equation

$$256\frac{(s+1)^3}{s} = \frac{(t^4 + 228t^3 + 494t^2 - 228t + 1)^3}{t(t^2 - 11t - 1)^5}.$$

This equation defines a curve C of genus 0 with  $(0,0) \in C(\mathbb{Q})$ , which can be parametrize (according to Magma and making a linear change of the projective coordinate in order to simplify the parametrization) by:

$$(s,t) = \left(\frac{-512(5r+1)(5r^2-1)^5}{(5r-1)(5r+3)(5r^2+10r+1)^5}, \frac{2(5r+3)^2}{(5r-1)^2(5r+1)}\right), \quad \text{where } r \in \mathbb{Q}$$

Finally, replacing the above value for t in  $\mathcal{E}_{5,t}$  and simplifying the Weierstrass equation we obtain:

$$E_r: y^2 = x^3 - 2(5r^2 + 2r + 1)(5r^4 - 40r^3 - 30r^2 + 1)x^2 + 84375(5r - 1)(5r + 3)(5r^2 + 10r + 1)^5x.$$

Thus we have proved the following result:

**Proposition 15.** There exist infinitely many  $\overline{\mathbb{Q}}$ -isomorphic classes of elliptic curves  $E/\mathbb{Q}$  such that  $E(\mathbb{Q})_{tors} \simeq \mathcal{C}_1$  (resp.  $\mathcal{C}_2$ ) and infinitely many quintic number fields K such that  $E(K)_{tors} \simeq \mathcal{C}_5$  (resp.  $\mathcal{C}_{10}$ ).

6.2. 
$$(C_5, C_{25})$$

Let  $E/\mathbb{Q}$  be an elliptic curve such that  $G_E(5)$  is labeled by 5B.1.1 and there exists a quintic number field K with the property  $E(K)_{\text{tors}} \simeq \mathcal{C}_{25}$ . Then, by Lemma 10 (3), K is Galois. In particular  $E/\mathbb{Q}$  has a rational 25-isogeny. Then, we observe in [24, Table 3] that its j-invariant must be of the form:

$$j_{25}(h) = \frac{(h^{10} + 10h^8 + 35h^6 - 12h^5 + 50h^4 - 60h^3 + 25h^2 - 60h + 16)^3}{(h^5 + 5h^3 + 5h - 11)},$$

for some  $h \in \mathbb{Q}$ .

On the other hand, Zywina [34, Theorem 1.4(iii)] proved that there exists  $s \in \mathbb{Q}$  such that E is isomorphic (over  $\mathbb{Q}$ ) to  $\mathcal{E}_{6,s}$ :

$$\mathcal{E}_{6,s} : y^2 = x^3 - 27(s^4 - 12s^3 + 14s^2 + 12s + 1)x + 54(s^6 - 18s^5 + 75s^4 + 75s^2 + 18s + 1).$$

The above j-invariants should be equal, so  $j(\mathcal{E}_{6,s}) = j_{25}(h)$  for some  $s, h \in \mathbb{Q}$ . This equality defines a non-irreducible curve over  $\mathbb{Q}$  whose irreducible components are a genus 16 curve and a genus 0 curve. It is possible to give a parametrization of the above genus

0 curve such that  $s = t^5$  and  $h = (t^2 - 1)/t$ , where  $t \in \mathbb{Q}^*$ . That is, there exists  $t \in \mathbb{Q}^*$  such that E is  $\mathbb{Q}$ -isomorphic to  $\mathcal{E}_{6,t^5}$ .

Now, let us define the quintic polynomial  $p_{25}(x)$ :

```
p_{25}(x) = x^5 + (-5t^{10} - 12t^8 - 12t^7 - 24t^6 + 30t^5 - 60t^4 + 36t^3 - 24t^2 + 12t - 5)x^4 \\ + (10t^{20} + 48t^{18} + 48t^{17} + 96t^{16} + 24t^{15} + 240t^{14} - 144t^{13} + 96t^{12} - 48t^{11} + 236t^{10} \\ + 48t^8 + 48t^7 + 96t^6 - 264t^5 + 240t^4 - 144t^3 + 96t^2 - 48t + 10)x^3 + (-10t^{30} - 72t^{28} - 72t^{27} - 144t^{26} - 252t^{25} - 360t^{24} + 216t^{23} - 144t^{22} + 72t^{21} + 1914t^{20} + 720t^{18} \\ + 720t^{17} + 1440t^{16} - 1800t^{15} + 3600t^{14} - 2160t^{13} + 1440t^{12} - 720t^{11} + 1914t^{10} - 72t^8 \\ - 72t^7 - 144t^6 + 612t^5 - 360t^4 + 216t^3 - 144t^2 + 72t - 10)x^2 + (5t^{40} + 48t^{38} + 48t^{37} + 96t^{36} + 312t^{35} + 240t^{34} - 144t^{33} + 96t^{32} - 48t^{31} - 4516t^{30} - 1584t^{28} - 1584t^{27} \\ - 3168t^{26} + 19944t^{25} - 7920t^{24} + 4752t^{23} - 3168t^{22} + 1584t^{21} - 18114t^{20} - 1584t^{18} \\ - 1584t^{17} - 3168t^{16} - 12024t^{15} - 7920t^{14} + 4752t^{13} - 3168t^{12} + 1584t^{11} - 4516t^{10} \\ + 48t^8 + 48t^7 + 96t^6 - 552t^5 + 240t^4 - 144t^3 + 96t^2 - 48t + 5)x - t^{50} - 12t^{48} - 12t^{47} \\ - 24t^{46} - 114t^{45} - 60t^{44} + 36t^{43} - 24t^{42} + 12t^{41} + 2371t^{40} + 816t^{38} + 816t^{37} \\ + 1632t^{36} - 17880t^{35} + 4080t^{34} - 2448t^{33} + 1632t^{32} - 816t^{31} + 47294t^{30} - 13896t^{28} \\ - 13896t^{27} - 27792t^{26} + 34740t^{25} - 69480t^{24} + 41688t^{23} - 27792t^{22} + 13896t^{21} \\ + 47294t^{20} + 816t^{18} + 816t^{17} + 1632t^{16} + 13800t^{15} + 4080t^{14} - 2448t^{13} + 1632t^{12} \\ - 816t^{11} + 2371t^{10} - 12t^8 - 12t^7 - 24t^6 + 174t^5 - 60t^4 + 36t^3 - 24t^2 + 12t - 1.
```

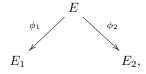
Then  $p_{25}(x)$  divides the 25-division polynomial of  $\mathcal{E}_{6,t^5}$ . Fixing  $t \in \mathbb{Q}$ , we have that  $\mathbb{Q}(\alpha)/\mathbb{Q}$  is a Galois extension of degree 5 and  $E(\mathbb{Q}(\alpha)) = \langle R \rangle \simeq \mathcal{C}_{25}$ , where  $p_{25}(\alpha) = 0$  and the x-coordinate of R is  $3\alpha$ . Note that  $[5]R = (3t^{10} - 18t^5 + 3, 108t^5) \in E(\mathbb{Q})$ .

We have proved the following result:

**Proposition 16.** There exist infinitely many  $\overline{\mathbb{Q}}$ -isomorphic classes of elliptic curves  $E/\mathbb{Q}$  and infinitely many quintic number fields K such that  $E(K)_{tors} \simeq \mathcal{C}_{25}$ . All of them satisfy  $E(\mathbb{Q})_{tors} \simeq \mathcal{C}_{5}$ .

#### 6.2.1. A 5-triangle tale

Let  $E/\mathbb{Q}$  be an elliptic curve such that  $G_E(5)$  is labeled by  $\mathsf{5Cs.1.1}$  ( $H_{1,1}$  in Zywina's notation). Zywina [34, Theorem 1.4(iii)] proved that there exists  $t \in \mathbb{Q}$  such that E is isomorphic (over  $\mathbb{Q}$ ) to  $\mathcal{E}_{1,t} = \mathcal{E}_{5,t^5}$ . We observe in Table 1 that there exists a  $\mathbb{Z}/5\mathbb{Z}$ -basis  $\{P_1, P_2\}$  of E[5] such that  $E(\mathbb{Q})_{\mathrm{tors}} = \langle P_2 \rangle \simeq \mathcal{C}_5$ ,  $E(\mathbb{Q}(\zeta_5))_{\mathrm{tors}} = E[5] = \langle P_1, P_2 \rangle$ . Now, since  $\langle P_1 \rangle$  and  $\langle P_2 \rangle$  are distinct  $\mathrm{Gal}(\overline{\mathbb{Q}}/\mathbb{Q})$ -stable cyclic subgroups of  $E(\overline{\mathbb{Q}})$  of order 5, there exist two rational 5-isogenies:



where the elliptic curves  $E_1 = E/\langle P_1 \rangle$  and  $E_2 = E/\langle P_2 \rangle$  are defined over  $\mathbb{Q}$ . Using Velu's formulae we can compute explicit equations of these elliptic curves:

$$E_1 = \mathcal{E}_{6,t^5},$$
  $E_2 = \mathcal{E}_{5,s(t)}, \text{ where } s(t) = \frac{t(t^4 + 3t^3 + 4t^2 + 2t + 1)}{t^4 - 2t^3 + 4t^2 - 3t + 1}.$ 

Then we have  $G_{E_1}(5)$  is labeled by 5B.1.1 and  $G_{E_2}(5)$  is labeled by 5B.1.2. We observe that the elliptic curve  $E_1$  is the one obtained in the previous section, that is,  $E_1(\mathbb{Q}(\alpha)) = \langle R \rangle \simeq \mathcal{C}_{25}$ , where  $p_{25}(\alpha) = 0$  and the x-coordinate of R is  $3\alpha$ . In particular,  $E_1$  has a rational 25-isogeny. Note that  $[5]R = Q_2 = (3t^{10} - 18t^5 + 3, 108t^5)$  is such that  $E_1(\mathbb{Q})[5] = \langle Q_2 \rangle \simeq \mathcal{C}_5$  and  $E_1(L)[5] = E_1[5] = \langle Q_1, Q_2 \rangle$  with  $[L:\mathbb{Q}] = 20$ . If  $\widehat{\phi_1}: E_1 \longrightarrow E$  denotes the dual isogeny of  $\phi_1$ , then we have  $\phi_2 \circ \widehat{\phi_1}(\langle R \rangle) = \mathcal{O} \in E_2$ . That is,  $\phi_2 \circ \widehat{\phi_1}, : E_2 \longrightarrow E_1$  is a rational 25-isogeny.

Remark. There are only seven elliptic curves (11a1, 550k2, 1342c2, 33825be2, 165066d2, 185163a2 and 192698c2) with conductor less than 350.000 such that the corresponding mod 5 Galois representation is labeled 5Cs.1.1. All of them give the corresponding 5-triangle with the associated elliptic curve (11a3, 550k3, 1342c1, 33825be3, 165066d1, 185163a1 and 192698c1 resp.) with  $\mathcal{C}_{25}$  torsion over the corresponding quintic number field. Notice that there are no more elliptic curves with conductor less than 350.000 and torsion isomorphic to  $\mathcal{C}_{25}$  over a quintic number field.

#### 7. Examples

Given an elliptic curve  $E/\mathbb{Q}$ , we describe a method to compute the quintic number field where the torsion could grow. If E is 121a2, 121c2 or 121b1 we have proved in Lemma 11 that the torsion grows to  $C_{11}$  over the quintic number field  $\mathbb{Q}(\zeta_{11})^+$ . For the rest of the elliptic curves, we first compute  $E(\mathbb{Q})_{\text{tors}} \simeq G \in \Phi(1)$ . If  $G \neq C_1, C_2, C_5$ , then by Theorem 2 the torsion remains stable under any quintic extension. If  $G = C_1$  or  $C_2$  then, by Theorem 2, the torsion could grow to  $C_5$  or  $C_{10}$  respectively. Now compute the 5-division polynomial  $\psi_5(x)$ . It follows that the quintic number fields where the torsion could grow are contained in the number fields attached to the degree 5 factors of  $\psi_5(x)$ . In the case  $G = C_5$  the torsion could grow to  $C_{25}$ , and the method is similar, replacing the 5-division polynomial by the 25-division polynomial. We explain this method with an example.

**Example.** Let E be the elliptic curve 11a2. We compute  $E(\mathbb{Q})_{\text{tors}} \simeq \mathcal{C}_1$ . Now, the 5-division polynomial has two degree 5 irreducible factors:  $p_1(x)$  and  $p_2(x)$ . Let  $\alpha_i \in \overline{\mathbb{Q}}$  such that  $p_i(\alpha_i) = 0$ , i = 1, 2. We deduce  $\mathbb{Q}(\sqrt[5]{11}) = \mathbb{Q}(\alpha_1) = \mathbb{Q}(\alpha_2)$  and  $E(\mathbb{Q}(\sqrt[5]{11}))_{\text{tors}} \simeq \mathcal{C}_5$ .

Table 3 shows examples where the torsion grows over a quintic number field. Each row shows the label of an elliptic curve  $E/\mathbb{Q}$  such that  $E(\mathbb{Q})_{\text{tors}} \simeq G$ , in the first column,

| $H \in \mathcal{C}$ | $H \in \Psi_{\mathbb{Q}}(5,G)$ and $G \neq H$ . |                            |                       |  |  |  |  |  |  |  |
|---------------------|-------------------------------------------------|----------------------------|-----------------------|--|--|--|--|--|--|--|
| G                   | Н                                               | quintic                    | label                 |  |  |  |  |  |  |  |
| $\mathcal{C}_1$     | $C_5$                                           | $\mathbb{Q}(\sqrt[5]{11})$ | 11a2                  |  |  |  |  |  |  |  |
| 01                  | $\mathcal{C}_{11}$                              | $\mathbb{Q}(\zeta_{11})^+$ | 121a2 , 121c2 , 121b1 |  |  |  |  |  |  |  |
| $\mathcal{C}_2$     | $\mathcal{C}_{10}$                              | $\mathbb{Q}(\sqrt[5]{12})$ | 66c3                  |  |  |  |  |  |  |  |
| $C_5$               | $C_{25}$                                        | $\mathbb{Q}(\zeta_{11})^+$ | 11a3                  |  |  |  |  |  |  |  |

Table 3 Examples of elliptic curves such that  $G \in \Phi(1)$ ,  $H \in \Phi_{\mathbb{Q}}(5, G)$  and  $G \neq H$ .

and  $E(K)_{\text{tors}} \simeq H$ , in the second column, and the quintic number field K in the third column.

**Remark.** Note that, although we have proved in Propositions 15 and 16 that there are infinitely many elliptic curves over  $\mathbb{Q}$  such that the torsion grows over a quintic number field, these elliptic curve seems to appear not very often. We have computed for all elliptic curves over  $\mathbb{Q}$  with conductor less than 350.000 from [6] (a total of 2.188.263 elliptic curves) and we have found only 1256 cases where the torsion grows. Moreover, only 40 cases when it grows to  $\mathcal{C}_{10}$  and 7 to  $\mathcal{C}_{25}$  (the elliptic curves 11a3, 550k3, 1342c1, 33825be3 165066d1, 185163a1 and 192698c1).

# Acknowledgments

We thank Álvaro Lozano-Robledo, Filip Najman, and David Zureick-Brown for useful conversations. The author would like to thank the anonymous referee for useful comments and suggestions.

#### References

- B.J. Birch, W. Kuyk (Eds.), Modular Functions of One Variable IV, Lecture Notes in Mathematics, vol. 476, Springer, 1975.
- [2] W. Bosma, J. Cannon, C. Fieker, A. Steel (Eds.), Handbook of Magma Functions, Edition 2.20, 2015, http://magma.maths.usyd.edu.au/magma.
- [3] P. Bruin, F. Najman, A criterion to rule out torsion groups for elliptic curves over number fields, Res. Number Theory 2 (2016) 3.
- [4] M. Chou, Torsion of rational elliptic curves over quartic Galois number fields, J. Number Theory 160 (2016) 603–628.
- [5] P.L. Clark, P. Corn, A. Rice, J. Stankewicz, Computation on elliptic curves with complex multiplication, LMS J. Comput. Math. 17 (2014) 509–539.
- [6] J.E. Cremona, Elliptic curve data for conductors up to 350.000, available on http://johncremona.github.io/ecdata/, 2015.
- [7] M. Derickx, A.V. Sutherland, Torsion subgroups of elliptic curves over quintic and sextic number fields, Proc. Amer. Math. Soc. (2017), in press.
- [8] G. Fung, H. Ströher, H. Williams, H. Zimmer, Torsion groups of elliptic curves with integral j-invariant over pure cubic fields, J. Number Theory 36 (1990) 12–45.
- [9] E. González-Jiménez, J. González, Modular curves of genus 2, Math. Comp. 72 (2003) 397–418.
- [10] E. González-Jiménez, Á. Lozano-Robledo, On torsion of rational elliptic curves over quartic fields, Math. Comp. (2017), in press.
- [11] E. González-Jiménez, F. Najman, Growth of torsion groups of elliptic curves upon base changes, arXiv:1609.02515.

- [12] E. González-Jiménez, F. Najman, J.M. Tornero, Torsion of rational elliptic curves over cubic fields, Rocky Mountain J. Math. 46 (6) (2016) 1899–1917.
- [13] E. González-Jiménez, J.M. Tornero, Torsion of rational elliptic curves over quadratic fields, Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Math. RACSAM 108 (2014) 923–934.
- [14] E. González-Jiménez, J.M. Tornero, Torsion of rational elliptic curves over quadratic fields II, Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Math. RACSAM 110 (2016) 121–143.
- [15] D. Jeon, C.H. Kim, A. Schweizer, On the torsion of elliptic curves over cubic number fields, Acta Arith. 113 (2004) 291–301.
- [16] D. Jeon, C.H. Kim, E. Park, On the torsion of elliptic curves over quartic number fields, J. Lond. Math. Soc. (2) 74 (2006) 1–12.
- [17] S. Kamienny, Torsion points on elliptic curves and q-coefficients of modular forms, Invent. Math. 109 (1992) 129–133.
- [18] M.A. Kenku, The modular curve  $X_0(39)$  and rational isogeny, Math. Proc. Cambridge Philos. Soc. 85 (1979) 21–23.
- [19] M.A. Kenku, The modular curves  $X_0(65)$  and  $X_0(91)$  and rational isogeny, Math. Proc. Cambridge Philos. Soc. 87 (1980) 15–20.
- [20] M.A. Kenku, The modular curve  $X_0(169)$  and rational isogeny, J. Lond. Math. Soc. (2) 22 (1980) 239–244.
- [21] M.A. Kenku, The modular curve  $X_0(125)$ ,  $X_1(25)$  and  $X_1(49)$ , J. Lond. Math. Soc. (2) 23 (1981) 415–427.
- [22] M.A. Kenku, F. Momose, Torsion points on elliptic curves defined over quadratic fields, Nagoya Math. J. 109 (1988) 125–149.
- [23] S. Kwon, Torsion subgroups of elliptic curves over quadratic extensions, J. Number Theory 62 (1997) 144–162.
- [24] A. Lozano-Robledo, On the field of definition of p-torsion points on elliptic curves over the rationals, Math. Ann. 357 (2013) 279–305.
- [25] B. Mazur, Rational isogenies of prime degree, Invent. Math. 44 (1978) 129–162.
- [26] L. Merel, Bornes pour la torsion des courbes elliptiques sur les corps de nombres, Invent. Math. 124 (1996) 437–449.
- [27] H. Müller, H. Ströher, H. Zimmer, Torsion groups of elliptic curves with integral j-invariant over quadratic fields, J. Reine Angew. Math. 397 (1989) 100–161.
- [28] F. Najman, The number of twists with large torsion of an elliptic curve, Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Math. RACSAM 109 (2015) 535-547.
- [29] F. Najman, Torsion of elliptic curves over cubic fields and sporadic points on  $X_1(n)$ , Math. Res. Lett. 23 (2016) 245–272.
- [30] L. Olson, Points of finite order on elliptic curves with complex multiplication, Manuscripta Math. 14 (1974) 195–205.
- [31] A. Pethő, T. Weis, H. Zimmer, Torsion groups of elliptic curves with integral j-invariant over general cubic number fields, Internat. J. Algebra Comput. 7 (1997) 353–413.
- [32] J-H. Silverman, Advanced Topics in the Arithmetic of Elliptic Curves, Graduate Texts in Mathematics, vol. 151, Springer-Verlag, New York, 1994.
- [33] A.V. Sutherland, Computing images of Galois representations attached to elliptic curves, Forum Math. Sigma 4 (2016) e4.
- [34] D. Zywina, On the possible images of the mod  $\ell$  representations associated to elliptic curves over  $\mathbb{Q}$ , arXiv:1508.07660.